Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, Gortmaker SL. The global obesity pandemic: shaped by global drivers and local environments. lancet 2011;378(9793):804–14.
Drewnowski A, Popkin BM. The nutrition transition: new trends in the global diet. Nutr Rev. 1997;55(2):31–43.
Baker P, Machado P, Santos T, Sievert K, Backholer K, Hadjikakou M, Russell C, Huse O, Bell C, Scrinis G. Ultra-processed foods and the nutrition transition: global, regional and national trends, food systems transformations and political economy drivers. Obese Rev. 2020;21(12):e13126.
Monteiro CA, Cannon G, Lawrence M, Costa Louzada Md, Pereira Machado P. Ultra-processed foods, diet quality, and health using the NOVA classification system. Rome: FAO; 2019.
Google Scholar
Fardet A, Rock E. Ultra-processed foods and food system sustainability: what are the links? sustainability. 2020;12(15):6280.
Keding GB, Schneider K, Jordan I. Production and processing of foods as core aspects of nutrition-sensitive agriculture and sustainable diets. food security. 2013;5(6):825–46.
Kroyer GT. Impact of food processing on the environment—an overview. LWT Food Sci Technol. 1995;28(6):547–52.
Jones NR, Conklin AI, Suhrcke M, Monsivais P. The growing price gap between more and less healthy foods: analysis of a novel longitudinal UK dataset. PLoS ONE. 2014;9(10):e109343.
Zorbas C, Palermo C, Chung A, Iguacel I, Peeters A, Bennett R, Backholer K. Factors perception to influence healthy eating: a systematic review and meta-ethnographic synthesis of the literature. Nutr Rev. 2018;76(12):861–74.
Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, Chung ST, Costa E, Courville A, Darcey V. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019;30(1):67-77. e63.
Chen X, Zhang Z, Yang H, Qiu P, Wang H, Wang F, Zhao Q, Fang J, Nie J. Consumption of ultra-processed foods and health outcomes: a systematic review of epidemiological studies. Nutr J. 2020;19(1):1–10.
Pagliai G, Dinu M, Madarena M, Bonaccio M, Iacoviello L, Sofi F. Consumption of ultra-processed foods and health status: a systematic review and meta-analysis. BrJ Nutr. 2021;125(3):308–18.
Monteiro CA, Cannon G, Moubarac JC, Martins APB, Martins CA, Garzillo J, Canella DS, Baraldi LG, Barciotte M, da Costa Louzada ML. Dietary guidelines to nourish humanity and the planet in the twenty-first century. A blueprint from Brazil. Public Health Nutr. 2015;18(13):2311–22.
Canada’s food guide https://food-guide.canada.ca/en/
Quoi dans mon assiette: Objectifs du PNNS 2018–2022 https://quoidansmonassiette.fr/objectifs‐pnns‐2018‐2022‐pour‐politique‐nutritionnelle‐et‐sante‐en‐france/
van Rossum C, Buurma-Rethans E, Dinnissen C, Beukers M, Brants H, Ocké M. The diet of the Dutch: results of the Dutch National Food Consumption Survey 2012–2016. 2020.
Google Scholar
Slimani N, Ferrari P, Ocke M, Welch A, Boeing H, Van Liere M, Pala V, Amiano P, Lagiou A, Mattisson I. Standardization of the 24-hour diet recall calibration method used in the European Prospective Investigation into Cancer and Nutrition (EPIC): general concepts and preliminary results. Eur J Clin Nutr. 2000;54(12):900–17.
NEVO Online Version 2016/5.0 Available online: https://nevo-online.rivm.nl/
Dutch LCA Food database. Available online: https://www.rivm.nl/voedsel-en-voeding/duurzaam-voedsel/database-milieubelasting-voedingsmiddelen.
Vellinga RE, van de Kamp M, Toxopeus IB, van Rossum C, de Valk E, Biesbroek S, Hollander A, Temme EH. Greenhouse gas emissions and blue water use of Dutch diets and its association with health. sustainability. 2019;11(21):6027.
De Klein C, Novoa RS, Ogle S, Smith KA, Rochette P, Wirth TC, McConkey BG, Mosier A, Rypdal K, Walsh M. N2O emissions from managed soils, and CO2 emissions from lime and urea application. IPCC guidelines for National greenhouse gas inventories, prepared by the National greenhouse gas inventories programme. 2006;4:1–54.
Google Scholar
Mackenbach JD, Dijkstra SC, Beulens JW, Seidell JC, Snijder MB, Stronks K, Monsivais P, Nicolaou M. Socioeconomic and ethnic differences in the relation between dietary costs and dietary quality: the HELIUS study. Nutr J. 2019;18(1):1–9.
Steele EM, Popkin BM, Swinburn B, Monteiro CA. The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study. Popul Health Metrics. 2017;15(1):6.
Rauber F, da Costa Louzada ML, Steele EM, Millett C, Monteiro CA, Levy RB. Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014). Nutrients. 2018;10(5):587.
Louzada MLdC, Martins APB, Canella DS, Baraldi LG, Levy RB, Claro RM, Moubarac JC, Cannon G, Monteiro CA. Ultra-processed foods and the nutritional dietary profile in Brazil. Rev Saude Publica. 2015;49:38.
Cediel G, Reyes M, da Costa Louzada ML, Steele EM, Monteiro CA, Corvalán C, Uauy R. Ultra-processed foods and added sugars in the Chilean diet (2010). Public Health Nutr. 2018;21(1):125–33.
Moubarac JC, Batal M, Louzada M, Steele EM, Monteiro C. Consumption of ultra-processed foods predicts diet quality in Canada. Appetite 2017;108:512–20.
Gupta S, Hawk T, Aggarwal A, Drewnowski A. Characterizing ultra-processed foods by energy density, nutrient density, and cost. Front Nutr. 2019;6:70.
Calixto Andrade G, Julia C, Deschamps V, Srour B, Hercberg S, Kesse-Guyot E, Allès B, Chazelas E, Deschasaux M, Touvier M. Consumption of ultra-processed food and its association with sociodemographic characteristics and diet quality in a representative sample of French adults. Nutrients. 2021;13(2):682.
Vandevijvere S, De Ridder K, Fiolet T, Bel S, Tafforeau J. Consumption of ultra-processed food products and diet quality among children, adolescents and adults in Belgium. Eur J Nutr. 2019;58(8):3267–78.
Monteiro C. Ultra-processing. Why bread, hot dogs–and margarine–are ultra-processed. World Nutr. 2011;2(10):534–49.
Google Scholar
Gibney MJ. Ultra-processed foods: definitions and policy issues. Curr Giant Nutr. 2019;3(2):nzy077.
Moubarac JC, Parra DC, Cannon G, Monteiro CA. Food classification systems based on food processing: significance and implications for policies and actions: a systematic literature review and assessment. Curr Obes Rep. 2014;3(2):256–72.
Baraldi LG, Steele EM, Canella DS, Monteiro CA. Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: evidence from a nationally representative cross-sectional study. BMJ open. 2018;8(3):e020574.
Marrón-Ponce JA, Sánchez-Pimienta TG, da Costa Louzada ML, Batis C. Energy contribution of NOVA food groups and sociodemographic determinants of ultra-processed food consumption in the Mexican population. Public Health Nutr. 2018;21(1):87–93.
Onita BM, Azeredo CM, Jaime PC, Levy RB, Rauber F. Eating context and its association with ultra-processed food consumption by British children. Appetite 2021;157:150007.
Lawrence MA, Baker PI. Ultra-processed food and adverse health outcomes. In.: British Medical Journal Publishing Group; 2019.
Hadjikakou M. Trimming the excess: environmental impacts of discretionary food consumption in Australia. Ecol Econ. 2017;131:119–28.
Seferidi P, Scrinis G, Huybrechts I, Woods J, Vineis P, Millett C. The neglected environmental impacts of ultra-processed foods. The Lancet Planetary Health. 2020;4(10):e437–8.
Vandevijvere S, Pedroni C, De Ridder K, Castetbon K. The cost of diets according to their caloric share of ultraprocessed and minimally processed foods in Belgium. Nutrients. 2020;12(9):2787.
Luiten CM, Steenhuis IH, Eyles H, Mhurchu CN, Waterlander WE. Ultra-processed foods have the worst nutrient profile, yet they are the most available packaged products in a sample of New Zealand supermarkets. Public Health Nutr. 2016;19(3):530–8.
Van de Kamp ME, Seves SM, Temme EH. Reducing GHG emissions while improving diet quality: exploring the potential of reduced meat, cheese and alcoholic and soft drinks consumption at specific moments during the day. BMC Public Health. 2018;18(1):1–12.
Kipnis V, Subar AF, Midthune D, Freedman LS, Ballard-Barbash R, Troiano RP, Bingham S, Schoeller DA, Schatzkin A, Carroll RJ. Structure of dietary measurement error: results of the OPEN biomarker study. AmJ Epidemiol. 2003;158(1):14–21.
Botelho R, Araújo W, Pineli L. Food formulation and not processing level: conceptual divergences between public health and food science and technology sectors. Crit Rev Food Sci Nutr. 2018;58(4):639–50.
Ares G, Vidal L, Allegue G, Giménez A, Bandeira E, Moratorio X, Molina V, Curutchet MR. Consumers’ conceptualization of ultra-processed foods. Appetite 2016;105:611–7.